Notes

Thallous salt	M, p., °C.	Formula	Tl analy Caled.	ses, % ⁴ Found
Sulfamate	139-140	H ₂ O ₃ NST1	68.0	68.0
o. Toluenesulfonate	213-216			
		C7H7O3ST1	54.3	54.3
<i>p</i> -Toluenesulfonate	226-228	C7H7O3ST1	54.3	54.1
p-Bromobenzenesulfonate	274 - 276	C ₆ H ₄ O ₃ BrSTl	46.3	46.3
m-Nitrobenzenesulfonate	307 -3 09	C₅H₄O₅NSTI	50.3	50.2
Sulfanilate	207 - 209	C ₅ H ₆ O ₃ NST1	54.3	54.2
2-Bromotoluene-4-sulfonate	220-222	C7H6O8BrSTl	44.8	44.5
2-Aminotoluene-4-sulfonate	101-103	C7H8O3NST1	52.3	52.1
2-Naphthoquinone-4-sulfonate	228-232 dec.	$C_{10}H_6O_4ST1$	47.9	47.6
d-Camphorsulfonate	267 - 269	C10H15O3STl	46.8	46.6
1,2,3,4-Tetramethylbenzene-5-sulfonate ⁵	260-262	$C_{10}H_{15}O_{3}STl$	49.0	48.7
1,2,3,5-Tetramethylbenzene-4-sulfonate ⁵	283 - 285	C10H18O8ST1	49.0	48.9
1,2,4,5-Tetramethylbenzene-3-sulfonate ⁶	340-341 dec.	C10H13O3ST1	49.0	48.8
$Pentamethylbenzenesulfonate^{5}$	325-326	$C_{11}H_{15}O_{3}STl$	47.3	47.1

TABLE I THALLOUS SULFONATES

The sulfonic acid is readily regenerated from the thallous salt by acidification with hydrochloric acid.

(4) Meyer and Bertheim, Ber., 37, 2051 (1904).

(5) The authors wish to thank Dr. L. I. Smith for samples of these sodium sulfonates. The melting points reported in Table I are uncorrected.

CHEMICAL LABORATORY IOWA STATE COLLEGE AMES, IOWA

RECEIVED OCTOBER 26, 1942

The Catalytic Reduction of Dehydrocholic Acid in Presence of Raney Nickel

BY W. M. HOEHN AND H. E. UNGNADE

Dehydrocholic acid has been reduced with palladium and hydrogen in acetic acid, with aluminum amalgam with benzene and ether as the solvent,¹ with sodium amalgam² and electrolytically.³ Ethyl dehydrocholate has been reduced with hydrogen in the presence of a catalyst consisting of nickel or cobalt.⁴

Biological systems also have been studied and it has been found that reductodehydrocholic acid,⁵ isoreductodehydrocholic acid^{6,7} and 7hydroxy-3,12-diketocholanic acid,⁸ were formed from dehydrocholic acid.

It has now been found that reductodehydrocholic acid is the main product when dehydrocholic acid is reduced in methanol solution with

- (2) Schenck, Z. physiol. Chem., 69, 383 (1910).
- (3) Schenck, ibid., 63, 308 (1909).

(4) Bockmühl, Ehrhart and Ruschig, U. S. Patent 2,143,676 (1939).

- (5) Kyoguku, Z. physiol. Chem., 250, 258 (1937).
- (6) Shibuya, J. Biochem. (Japan), 17, 385 (1933).

(7) Yamosaki and Kyoguku, Z. physiol. Chem. 233, 29 (1935);
235, 443 (1935).

(8) Mori. J. Biochem. (Japan). 29, 87 (1939)

hydrogen in the presence of Raney nickel. Other compounds that have been isolated from the mixture were methyl dehydrocholate and methyl reductodehydrocholate. Yields of reductodehydrocholic acid as high as 85% of the theoretical amount may be obtained when the reduction of dehydrocholic acid in methanol solution is carried out at 105°, under a hydrogen pressure of 3800 lb. No further reduction of reductodehydrocholic acid was observed when it was submitted to a hydrogen pressure of 5800 lb. at a temperature of 230°.

Two typical runs are listed in the following table

Moles of dehydrocholic acid	T, °C.	P	Time, hr.	Products isolated
0.1	110	3 8 00	3	67% reductodehydro- cholic acid
				20% methyl reducto-
				dehydrocholate
				12% methyl dehydro-
				cholate
0.2	105	3800	$\overline{0}$	85% reductodehydro-
				cholic acid
				5% dehydrocholic acid
				10% mixture of esters

Physical constants of the pure compounds

Reductodehydrocholic acid, m. p. 187–188° $[\alpha]^{25}D = +30 \pm i$ Methyl dehydrocholate, m. p. 232–233° $[\alpha]^{26}D = +30 \pm 1$ Methyl reductodehydrocholate, m. p. 152–153° $[\alpha]^{26}D = +32 \pm 1$

GEORGE BREON & CO. RESEARCH LABORATORIES KANSAS CITY, MISSOURI CHEMISTRY DEPARTMENT UNIVERSITY OF MISSOURI COLUMEIA. MISSOURI

RECEIVED NOVEMBER 4, 1942

⁽¹⁾ Borsche and Hallwass, Ber., 55, 3318 (1922).